WHAT IS A TURING MACHINE?

Foundations

Turing machines are used to investigate the nature of computation - computation that can be
carried out by humans or machines. The initial fundamental question is: "Can one give a precise
definition corresponding to the intuitive notion of being computable; i.e. of being able to be
carried out using calculations that anyone can do given simple instructions and unlimited paper?;
1.e. of being able to be specified by an algorithm ?"

Alan Turing (1912-1954) was an influential English mathematician who worked on the
foundations of computing. It has been claimed that he was responsible for the first complete
design of a stored program computer. In addition to his work on computing and mathematics, he
played an important role in the British codebreaking work during World War 2. The Association
for Computing Machinery (the major professional organisation of computer scientists in the
U.S.A.) has recognised his contribution to computer science by naming their major annual award
the Turing Award.

Interest in computation and algorithms goes back at least two thousand years, but it is only since
the 1930's that there has been a serious attempt to determine the limits of what is computable -
the study of computability . In 1936, Turing introduced the machines we call Turing machines
in order to argue that all detailed sets of instructions that can be carried out by a human
calculator can also be carried out by a suitably defined simple machine. Other researchers
working in the 1930's looked at computability from different points of view - giving alternative
formalisations to attempt to capture the (intuitive) notion of computable function - which all
have turned out to be equivalent; i.e. it has been proved that any function computable by any of
the proposed mechanisms can be computed using a Turing machine, and vice-versa. These
remarkable results show that these definitions have managed to give the vague concept of
"computability" a very precise meaning.

A Turing machine can be thought of as a computing device stripped to its essentials. It will be
vastly less efficient than a modern computer, but, in compensation, much less complex. Such a
device needs to be able to receive input , say on paper, to carry out intermediate calculations -
say using "scratch paper" - that serve to record things for later reference in the calculation but
which need not be shown when the final result is to be displayed, and to display the final result.
At different times the device can invoke one of a number of "subroutines" which we can think of
as different mental states. Calculations are not to require ingenuity or mathematical invention.
The instructions for the device must all be fully determined and finitely described before any
particular computation to which it is applied is selected; i.e. all possible types of steps are to be
specified in advance. A typical calculation can be thought of as just replacing symbols by
symbols (including erasing symbols, as we consider the blank to be one of the possible
symbols). This replacement involves reading and writing symbols on the paper. The device can
move to all parts of the paper to do computations. The amount of scratch paper can be thought of
as unlimited in that we always allow the device to request more paper as needed. A fixed finite
alphabet of symbols is part of the definition of each machine, as is the specification of the
finitely many states .



One of the key outcomes of Turing's analysis of computation is the assertion that every
algorithm can be programmed on some Turing machine. We come back to this point in the
section "What Turing machines can do'.

Turing machine organisation

We now describe the characteristics of a Turing machine. This description is rather informal as it
is only intended to explain the general idea. More careful definitions may be found in textbooks
on the Theory of Computation and the interested reader is urged to consult such a book. The
reference list at the end of this section suggests some suitable books.

» The machine consists of a control unit , a linear tape that is divided into squares and
a (read-write) head that scans one square of the tape at a time.

* The control unit can be set to one of a finite number of distinct internal states qq, ....,
qm - At the start of each computation the control unit is in a specified starting state . The tape,

at any given time, is finite but is potentially infinite in both directions in the sense that we
assume a new blank square will be appended to the tape whenever needed. Symbols written on
the tape are taken from a finite alphabet sq, ..., s . Termination of a computation is signalled

by the machine being set to one of a specified set of final states .

* The program for a given machine is a finite set of instructions, each instruction
being of the form:

if currently in state q; and scanning symbol 5j
then

replace 5j by sy

and move one square in direction D /*D may be Left or Right*/
and set machine to state 4p

i.e. each instruction can be abbreviated to (qj, 8j> Sks D, Ip ) where D is one of L or R, qp may be
the same as qj, and sj may be the same as sj.

» Execution of the program proceeds in a step by step fashion. Initially the control unit
is set in the starting state and the tape head is in some specified position on the tape (commonly
scanning the leftmost non-blank symbol). Then applicable instructions are obeyed until there is
no further appropriate instruction and then the machine halts. It is possible for a Turing machine
to keep running and never halt. If the machine halts in a final state, it is said to accept the input
string - shown by the ATMS program as a "thumbs up" sign in the speedo dial. Otherwise, on
termination, the program shows thumbs down.

Examples

Running the example machines on the distribution disk, using a variety of different tapes, should
give you an idea of the general behaviour of Turing machines.






Variations

*  Our Turing machine description allowed the designer of a Turing machine to use any
finite alphabet of symbols for the tape. One of the basic theorems of the theory states that an
alphabet with only two non-blank characters, e.g. 0, 1 and B (blank), is sufficient to build a
machine to compute any function. [The ATMS program allows the designer to use any finite
alphabet, but this theorem says that for each machine using an alphabet with more than two non-
blank symbols, there is another (generally more complex) 'binary' Turing machine which only
uses symbols 0, 1 and B and which computes exactly the same function; i.e. given the same
inputs the machines produce the same outputs (generally the binary machine takes longer to
complete the computation, and the binary machine starts with the input provided binary coded on
its tape). |

* Our Turing machine description was in terms of a two way infinite tape. An
alternative definition uses only a one way infinite tape (with the convention that trying to move
past the end of the tape causes the machine to halt). Another basic theorem states that these two
classes of Turing machines are equivalent, i.e. any function which can be computed by a Turing
machine operating on two way tape can also be computed by some (other) Turing machine
operating on a one way tape, and vice versa. [The ATMS program allows the creation of
machines that operate on one-way tapes. See the SETUP menu.]

» There are a number of other variations which all turn out to lead to equivalent classes
of machines. For example, some writers allow the machine on a single move to change state or
move but not both [-the ATMS program allows the creation of such machines. See the SETUP
menu.] Other variations involving the shape of the tape, the number of tape tracks, the number of
tape heads, etcetera have not been implemented.

* A most important variation is to allow the machine to be non-deterministic , i.e. at
each step to have a finite number of choices of moves that it can make. [The ATMS program
allows the creation of such machines - see the SETUP menu.] Another basic theorem states that
the classes of functions computable by deterministic and by non-deterministic Turing machines
are the same. A more delicate question, to which the answer is not (yet) known, is how much
longer, in general, it must take a deterministic machine to perform a computation compared with
an equivalent (i.e. computes the same function) non-deterministic machine.

The 'stability' of the class of functions computable by Turing machines under all these variations
is further evidence of the importance of this class of functions, and further evidence of the
importance of Turing machines.

What Turing machines can do

Turing machines enable a precise account of what it means for a function over the natural
numbers {0,1,2,...} to be computable . The initial content of the tape is the input to the function.
If the machine halts, the final content of the tape is the output, or value, of the function. Turing
machines can fairly easily be designed to compute functions such as addition and multiplication.
Using an alphabet with at least the symbols, say # and +, represent 0 by #, 1 by ##, 2 by ###,
etcetera. Use ##+##H## as initial contents of the tape to request the value of 1+4, etcetera. Then a
Turing machine that starts with such a tape, performs a computation, and halts with the final



contents of the tape representing the sum of the input digits (in this case ######) is said to
compute addition. See the example



machine Unary Adder provided with the distribution disk. So addition is said to be a (7uring )
computable function .

What other kinds of functions are computable by Turing machines? It turns out that any function
that can be computed by, say, a Pascal program (actually an idealised Pascal program in that one
needs to assume it has access to unlimited storage) can also be computed by a Turing machine.
Of course, since the Turing machine can only carry out very simple steps at a time, a Turing
machine to compute some function will be more complex than the corresponding Pascal program
(e.g. consider addition, as above) but, ignoring the issue of complexity, we can say that Turing
machines and (idealised) Pascal programs have the same computing power.

From the 1930's there have been many attempts to give a precise definition corresponding to the
intuitive notion of computable . In each case it has been possible to prove that the functions
computable according to the new definition were exactly the same as those computable
according to the previously suggested definitions. As the the evidence accumulated, it became
widely believed that Turing-computable functions corresponded exactly to the (intuitively)
computable functions. As we are trying to match up an imprecise (intuitive) notion with a formal
notion (Turing computability), it is not possible to prove that they are the same, but we have to
rely on experimental evidence. The belief that any intuitively computable function is
computable by a Turing machine (and so by any of the other mechanisms known to be equivalent
to Turing machines) is referred to as Church's hypothesis , and sometimes as the Church-Turing
hypothesis ; i.e. according to Church's hypothesis, Turing machines embrace all possible types
of computation.

What Turing machines cannot do

One of the key uses of a precise definition of computable function is to show that there are
functions which are non-computable . Indeed, the motivation of Turing's original work on
Turing machines was to show that a certain problem (to do with predicate calculus) was non-
computable.

There are many non-computable (also called unsolvable ) problems which arise in computer
science. We shall briefly describe one non-computable function which deals with the operation of
Turing machines. It is called the "busy beaver" problem. To explain this problem, we need the
notion of the productivity of a Turing machine . Consider Turing machines that use only the
symbol 1 and a blank symbol ( ). Initially the tape is blank. If the machine eventually halts,
scanning the leftmost of an unbroken string of 1's on an otherwise blank tape, its productivity is
said to be the number of 1's in that string. If the machine never halts, or halts with something
other than an an unbroken string of 1's, then its productivity 1is said to be 0.



Example:
The following three state machine has productivity 0.

The next three state machine has productivity 1.

000,

And the next three state machine has productivity 2.

0550550,

Let p(n) = the productivity of the most productive n-state machine. The busy beaver problem is
to design a Turing machine, which uses only the symbol 1 and the blank symbol, and which,
started in the starting state, scanning the leftmost of a string of n 1's on an otherwise blank tape,
eventually halts, scanning the leftmost of a string of p(n) 1's on an otherwise blank tape. It can
be proved that there is no such Turing machine, i.e. the function p is non-computable.

The books listed later contain descriptions of many unsolvable problems which arise in computer
science.

Feasible computation

Turing machines enable the study of functions that are computable, but, as presented above,
without major concern for how many steps it may take before the machine halts, or how much
tape is actually needed for a given computation. Since the mid-60's there has been a strong
interest in identifying the classes of problems and functions that are practical or feasible to
compute, as measured by the amount of time and/or space required for the computation.
Deterministic and non-deterministic Turing machines also play an important role in such
analyses. The interested reader is again referred to books such as those listed below.
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QUICK REFERENCE

General Setup:

Get setup dialog box by selecting Setup in Operate menu.

Blank Symbol
Max computations

Write AND move

Write OR move

Character typed is blank symbol.
If enabled, limits no. of transitions executed.

Makes transition box:

read symbol write symbol direction of tape head move(R or L)
II *, i L II

Makes transition box:

read symbol

4

Auto transition box
addition

One-way tape
Two-way tape

Record history

Overview

Deterministic
non-deterministic

Edit a TM:

Use tools:

O OO
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o

g 2

write symbol (not R or L) or
direction of tape head move(R or L).

When enabled automatically adds a transition box to all arcs
directly after drawing them.

selects one way or two way "infinite" tape.

If enabled allows deterministic TM to reverse. TM runs faster if
disabled. No effect on non-deterministic TM.

If enabled scales TM picture to show entire machine while running.

Sets ATMS to simulate deterministic TMs only
or non-deterministic ones as well.

Add (or convert to) a normal state.

Add (or convert to) a final state.



Add (or convert to) the initial state.
Drag arc between two different states.
Drag arc with same origin and destination out of a state.

Scroll drawing by dragging on editing window. Double click to show
page.

Drag transition boxes out of arrows on arcs. Click in transition
boxes to edit contents. Edit labels in states.

Drag states or transition boxes to new locations. Change shape of
arcs by dragging arrow. Click in state or transition box or in arrow
of arc to mark for deletion.



Holding down <option> converts other tools to arrow.
Delete arcs, states or transition boxes by marking with arrow tool, then press <backspace>.
Set Machine Title in Operate Menu:

Edits machine title and then puts it in bottom right hand corner of drawing.
Set Drawing Size in Windows menu

Set the maximum size of TM by dragging corner of black rectangle. Can be changed even if there is a
TM already. Cannot be shrunk smaller than the present TM. Shows the page breaks as setup in page setup in File
menu.
Show page in Windows menu or double click on hand tool:

Shows the entire TM. The grey frame can be moved around to select the view. Then press OK button.

Edit tape:

Use tools:

A

Click at insertion position, type. <Backspace> erases one character
Clear Tape in Operate menu clears entire tape.

Click on tape to set tape head position.
Use arrows on side of tape to :
Scroll tape fast/slow, right/left.

Run deterministic TM:
Check in Operate menu or <clover K> checks the TM for inconsistencies. If inconsistent, leaves a blob in a state or
transition box close to the inconsistency. A check is automatically done before running.

Reset in Operate menu or <clover R> resets tape to last edited or saved state and TM into start state.
Go in Operate menu, Go button above dial or <clover G> start TM running, change button to Pause.

Pause button (same location as Go button) stops TM temporarily, changes button to Cont(inue).
Cont(inue) (same location as Go button) button continues TM running.

Run Turing machine while button held down. Click to single step.

Run Turing Machine in reverse, only when record history is on. (Use Setup in Operate menu.)

Increase/decrease TM running speed by pressing buttons below speedo dial, when machine is stopped.

When tape is accepted "Thumbs up" symbol appears in speedo dial:

When tape is rejected "Thumbs down" appears in speedo dial:

Run non-deterministic TM:
Press Go button or select Go in Operate menu or <clover G>:
ATMS puts up dialog box with buttons (possibly not all active):
View Shows state of the currently successfully explored TM, allows
reversing (RR button) or forwarding (FF button) through states that



led to this accepting state. The Go button is changed to Next and is
used to find the next solution.
Find next Tries to find next alternative accepting solution.
Cancel Stops any further action of TM.

If no possible path to acceptance can be found, "thumbs down" is displayed in dial.
Computation may take a long time (possibly of exponential order).
To repeat from start use Reset in Operate menu or <clover R>, before pressing Go.

Print TM:

Make sure printer is set up (Chooser in Apple menu).

Use Page Setup in File menu to set print page size and reduction or enlargement.
Use Print in File menu <clover P> to print.

TM to/from disk:
Select Save as... from File menu.
Click in Set File Type button to select in next dialog box:
Normal:to save TM and remembered tape in ATMS file format

Machine only: to save TM only in ATMS file format

Tape only: to save tape in ATMS file format.

Text: to save the complete TM as a standard set representation in text
format (readable by Mac Write, ATMS can't use this.).

Pict: to save the TM picture in pict format (readable by MacDraw, ATMS

can't use this.).

Select Save from File menu or <clover S>:

Same as Save as ..., but displays dialog box only when not previously saved in ATMS file format.
Select Close from File menu <clover W>:

Closes TM, asks to save if modified since last save.
Select Open from File menu <clover O>:

Puts up standard open box to select a file in ATMS format for opening. If selected file contains a TM, Close
is executed first.

Others:

To move windows: Hold down <clover> and drag.

Quit in File menu <clover Q>

Edit menu used for desk accessories only. (NO cut, copy, paste or undo on TM editing).



